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Smirnov’s integrals and the quantum
Knizhnik-Zamolodchikov equation of level 0

Michio Jimbot, Takeo Kojimaf, Tetsuji Miwai and Yas-Hiro Quanot§

t Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan
} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Abstract. We study the quantum Kaizhnik-Zamolodchikov equation of level 0 associated with
the spin 1/2 representation of U, (5{2) We find an integral formula for solutions in the case of
an arbitrary total spin and |g| < 1. In the formula, different solutions can be obtained by taking
different integral kernels with the cycle of integration being fixed.

1. Introduction

In this paper, following [1], we will give an integral formula for solutions to the quantum
Knizhnik—Zamolodchikov (KZ) equation [2] for the quantum affine algebra U,(sly) when
the spin is 1/2, the level is 0 and jg| < 1.

In {1], Smirnov gave an integral formula for the form factors of the sine~Gordon model.
His method involved solving a systemn of difference equations for a vector-valued function
in N variables (81, ..., Bn), which takes values in the N-fold tensor product of the spin
1/2 representation C? of U, ,(s12). The total space C2® --- ® C? splits into the subspaces
of fixed total spins (I —n) /2 where [ +n =N and 0 € n € N. In [1], an integral formula
was given for the case n = [ = N/2 (N even) and |g| = 1. In a private communication to
the present authors, Smirnov showed the modified formula for the case |g| < 1, which is
given at the end of section 4 of the present paper. Our main contribution is to generalize
Smirnov’s formula to the case of an arbitrary total spin.

Before going into the details, let us discuss several points concerning the quantum
Knizhnik—-Zamolodchikov equation and the integral formulae. We are largely indebted to
Smirnov for discussions on this maiter.

The KZ equation was introduced in [3] as the master equation for the correlation
functions of the conformal field theories with gange symunetries, ie. the Wess—Zumino—
Witten model. In [4], it was studied by using the representation theory of the affine
Lie algebra 5[2 The main observation in these developments is that the local operators
in the Wess—Zumino-Witten model are realized as the intertwiners of the highest-weight
representations (they are called the vertex operators), and the correlation functions which
are given as the matrix elements of the products of the vertex operators with respect to
the highest-weight vectors, satisfy the KZ equation. The components of the intertwiners
belong to finite-dimensional representations of the affine Lie algebras, e.g., the spin [/2
representation C? of 5[2 Such representations are parametrized by the complex spectral
parameters. The correlation functions, therefore, take their values in the tensor products
of finite-dimensional representations and depend on the spectral parameters associated with

them, say (81,..., By).
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This similarity between the KZ equation and the form-factor equation fed to the
introduction of the quantum KZ equation by Frenkel and Reshetikhin. The representation
theory of the affine Lie algebras is replaced by that of the quantum affine algebras, and the
system of differential equations is replaced by that of difference equations.

Compared with the quantum KZ equation of Frenkel and Reshetikhin, Smirnov’s
equation for the sine~Gordon model is special for the following two reasons. First, the
former contains a complex parameter; the level of the highest-weight representations. In
the latter, the level is set to 0. In this paper, we stick to the level 0 case as in Smirnov’s
work.

Second, the quantum KZ equation ‘admits a choice of a diagonal operator, which acts
on the tensor component whose spectral parameter undergoes a shift (see (2.5)). Smimov’s
equation chooses the identity operator for that. In our integral formula, the said operator is
not the identity in general, but one fine-tuned according to the total spin (I — n}/2. Since
Smimov considered only the case [ = #, the fine tuning was trivial. To be precise, the case
I =n=+2 is also studied in [1]. However, since it is only in the rational limit, the operator
again reduces to the identity.

We now discuss the solutions and the integral formulae.

The analytic structures of the solutions to the quantum KZ equation and the ordinary one
differ. The former admits solutions which are meromorphic in the variables (8;,..., By}
i.e., the additive spectral parameters. The latter, in general, forces its solutions to exhibit
branches. Namely, the monodromy structures of the solutions are very different. In fact, it
is more important to consider the braid relations for the solutions, i.e. the behaviour of the
solutions when two of the variables are interchanged. In [4], the braid representations for the
Kz equation were nicely deduced from the commutation refation for the vertex operators. As
int {2, 5], the quantum vertex operators enjoy a similar commutation relation. The difference
in these two commutation relations is that in the former the coefficients are independent of
the spectral parameters but in the latter they are not.

The said difference is closely related to the following fact. Being a holonomic system
of differential equations, the space of the solutions to the KZ equation is finite-dimensional,
while the quantum KZ equation admits the linearity with the coefficients in the ring of
quasi-constants, i.e. functions invariant under the relevant shifts of the spectral parameters.
Therefore. the braiding property of the solutions to the KZ equation is unique up to finite-
dimensional similarity transformations while it is quite ambiguous for the quantum KZ
equation. Nevertheless, the commutation relations of the quantum vertex operators imply
that the braid relation with the R-matrix in the coefficients (we call it the R-matrix symmetry,
see (2.3)) is indeed compatible with the difference equation. For example, the solutions
obtained from the quantum vertex operators satisfy this property. Smirnov suggests that we
can utilize the freedom of the choice of the quasi-constants to choose this particular braid
relation for the solutions. Thus, we demand R-matrix symmetry in constructing the integral
formulae. Then, the vector-valued unknown function reduces to a single function, and the
systemn of difference equations reduces to a certain deformed cyclicity (2.4).

Ongce the equation is thus reduced, we can construct the integral formula as follows.
Let us explain our formula in the case n < {. We find it convenient to employ the
multiplicative spectral parameters (z1, . . ., Zy), where g; o log z;. Following Smirnov, we
choose an integral kernel W(xy, ..., Xq|21,. .., z5). It has simple poles at x, = z;g=(+%
(k = 0,1,...), and satisfies certain quasi-periodicities with respect to the shifts of the
varisbles x, — x,¢* and z; = z;g*. In fact, the choice of such an integral kernel
is not upique because the solutions to the quasi-periodicity conditions are not unique.
Smirnov’s idea is that this freedom in the integrand corresponds to the freedom of the
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solutions up to quasi-constants. The total integrand contains a fixed rational. function
F = F(x1,...,xpl21, ..., 2y} other than the said kernel. It is a polynomial in x,s and
homogeneous in x5 and z;s. We consider the total integral as an integral transform of
this rational function in terms of the integral kernel, fixing appropriately the cycles for the
integrations with respect to x,s. It is easily shown that if F' is a polynomial of degree greater
than N — 1 in a variable x,, then it is reducible to a lower-degree polynomial module; a
certain ‘total difference’ which vanishes after integration with respect to x,. Using this
fact, we can write down a system of algebraic relations for F as a sufficient condition for
the deformed cyclicity. These conditions are also necessary if we assume that there are no
other lower-degree relations of the kind mentioned above. Thus, we find F satisfying them.
The details will be given in the subsequent sections.

Lastly, - we discuss the related works on the integral formulae for the quantum Kz
equations. In [6,7], solutions by Jackson-type integrals are obtained. Their formulae are, in
principle, valid for the general level, as opposed to our integral formula restricted to level
0. On the other hand, the problem of choosing the cycles for Jackson-type integrals, which
accommodate the freedom of the solutions, is not well studied. In particular, the choice of
the cycles that leads to R-matrix symmetry is totally unclear.

A different type of integral formula was obtained in [8] by using the Frenkel-Jing
bosonization of the Jevel I highest-weight representations [9]). Though the level can be
chosen arbitrarily, it gives only one particular solution for each level. Since the relation
between the formulae in this paper and those in [8] are not yet clear, we do not discuss this
matter further.

The rest of the paper is organized as follows. In section 2, we formulate the difference
equation in terms of a single component of the vecter. In section 3, we solve the algebraic
relation for F in the case n = 1. In section 4 we solve the general case recursively.

2. Difference equations

The purpose of this section is to formulate the problem, thereby fixing our notations.

Let us begin by recalling the standard trigonometric R-matrix R(z) € End(V @ V)
associated with V = C2. Fix a complex number ¢ such that 0 < |g| < 1. The matrix R(z)
is specified by giving the matrix elements relative to the standard basis vy, v_€ V¥V

R(@)ve; @ vgy = Zsj v, B U, R@)FE. )
e1.8
The non-zero entries are
R(DIT = R@-Z=a(2
R(2)IZ = R(@@)~T =b(2)
R@)I; = R =c(2)
where

a(z) =1 b(z)=(1_z)2q C - elp) =
1—2q

In what follows, we shall work with the temsor product V@V, Following the usual
convention, we let Ry (z) (j # &) signify the operator on V®¥ acting as R(z) on the
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(J, k)th tensor components and as the identity on the other components, In patticular
we have Rpj(z) = PuRj(z)Pj, where P € End(V ® V) stands for the transposition
Px@y)=y®=x. ‘

The main properties of R(z) are the Yang—Baxter equation

Ri2(z1/22) Ria(21/23) Re3(22/23) = Rz (za/23)Riz(2a/za) Rua(z1/22)  (2.1)

and the unitarity relation

Ria(z1/z2) Ry (za/z1) = 1. (2.2)

The equations that concern us with in this paper are the following ones for a function
G(z1, -+, zn) with values in V®V:

(i} R-matrix symmetry

P j1GC s 2i41, 2 -+ ) = Ry j1(25/ 25400 C (oo s 2 Zjits - 20) (1Lj<sN=-1).
(2.3)

(ii} Deformed cyclicity
Pia o PyanG(za, ... TN, 21q'_4) =D1G(z1,...,2x8). (2.4)

In (2.4), Dy is an operator acting on the first component as D = diag(4,, 5_), the entries of
which will be specified below, and acting as the identity on the other components. Here a
remark is in order about the precise meaning of these equations. The functions we consider
throughout this article are not necessarily single valued in z; but are meromorphic in the
variable logz;. Accordingly, the shift z; ~ z;g™*, as in (2.4), is understood to mean
logz; — logz; — 4logg.

The equations (2.3) and (2.4) with D = 1 appeared in Smirnov’s works on the form
factors of massive integrable field theories [1]. As was pointed out ir [10], they imply the
quantum KZ equation of level O {2]

Gz, ..., za% ... 2w) = Rjo j(zi—1/4g® ™ . Ry @/ gy D)
X Ryn(zifzn) -+ Rj ju1(zi/2j41)G @1, o 1 Ty oo s ZH)- (2.5)
These equations have a Z,-symmetry which means that if G(zy, ..., zy) solves (2.3), (2.4)

then G(z1,-..,2Zx) =0 ®...® 0*G(zy, . .., Zy) solves the same system wherein 8. and
4_ are interchanged and where o* is given by

01
x —
o* = (1 0) .
In the following, we set T = g~!. We define the components of G by

G(Zl, ey ZN) = Z vsl @ A ® UEN(H ﬁj)Gs,mEN(ZI, “‘,ZN). (2'6)
gj==%

g;<0
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Then the equation (2.3} (resp. {2.4)) reads as (2.7) (2.8} (resp. (2.9):

iy by
G e 2 Gig1y ) =G T 2, Za e D 2.7)
j it zj ~zjTs , 14%1
G"'+ - ".(-.-12'1 Z'+1,v--) = ;_J‘i.—G"'_ * '“(""z-+1!z" "')
s (zj —zi4+1)T e
(-2 ., 1
SOy G L g @8)

(Z — zj:1)7T !

G2 (zg, .. s 2N, 21TY) = 8, G (20, 22, .., ZH)- (2.9)

The factor [, o+/7; in (2.6) is chosen so that the coefficients in these equations are free
from square root symbols Note that the singularity at z; = zj4; in (2.8) is spurious.
Equations (2.7)<(2.9) split into blocks, each involving components such that

n=fjlg=-} I=#jleg=+} (n+1=N)

are fixed. Because of the Zy-symmetry we may assume n < [ without loss of generality.
Consider the extreme component

" !

e, e,
G, ) = H @ Ze L Znste e 2 (2.10)
Because of (2.7), this function is symmetric separately in the variables (zy,...,z,) and
(Zutts - - -» Ziv). Equation (2.8) tells that all the components with fixed n, [ are uniquely

determined from H. Conversely, given any such H, the Yang-Baxter equation guarantees
that (2.3) can be solved consistently under the condition (2.10),

Remark. An explicit way of reconstructing G from H is described in [1]. The precedure
is as follows. Define the operator B(zy, ..., zxlt) € End(V®) by

Rinsa(ar/0)... Rnsa(an/0) = (22‘11 g i)

Here the 2 x 2 matrix structure is defined relative to the base v. of the (¥ + 1)th tensor
component of V®W¥ ), For o = (o, ..., an) witho; ==+, set J¢ = {j |y =+ } and

Wa(@is .-y 2w} = | | B, ---s 2nlea, )R

mes=
Q=v,.Q...Q00u, € VOV,

Then

G@1r e r W) = D, WalZ1 - > WY H {zmbness | Zphpesp) [ ] [T zn-

meJe b(ZP/Z"‘) meJe
peif

Under the relations (2.7) and (2.8), it is sufficient to consider the remaining relation
A T i = = —, &.2., yeeey = — .= F...
(2.9) for two cases with gy = + and £ e.g., (&1 ex) = (+ +...+}) and
h =1
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(—...— + ...+ =). Solving (2.8) for the corresponding components in terms of (2.10), we

n=1
find that the ongmal system (2.3), (2.4) is equivalent to the following for the single function
H{z1, ..oy 20 | Znt1s - - - » ZN), satisfying the said symmetry condition,
n+l 2
- i — T
3+1H(22, ey z,,+1[z,,+2, ey ZNy 2114) B 1__[ (_—J_H(Zz, vov s Zpl IZn+2, ves s TN Z[)
=2 Zt ZJ)‘E
n+l (I 2) n4l - i
21 Zj Zkf
- H(zlsZZs'-'sZ +1|Z',Z +2,--.,ZN) (2-11)
5@ ~2T 4 @G- 27 S
k)
N =Yyt
B—T_ZH(ZIT_41 L2y ey 2n|2n+1a LR ZN) I—[ —_AH(Z], e yznlzu-i-l’ rery ZN)
o1 @1 7T

(1—17%; {
- Z ( _ ) _J[ 1_[ ( __ ) 1 (221‘--1ZH¢Z_;'IZI1ZH+11---:ZN)-
jmm T ZITT D0 ZJ i)t

k#j
2.12)

In what follows we tune 8, = v~ and .. = /. We wish to find an integral formula
of the form

H(zy,...,28) = (Saw FYz1, . ... Zw) (2.13)

where S5,y stands for the integral transform

(S FYz1, -0 28) = 5£dqu(X1,-- s Xal21s -y ) WX, - a2y, -, 28)-(2.14)
;.t—l

The notation is explained below.
The kernel ¥ has the form

n N
WXy, oeny X521, o 2n) = 2, o0 Xnl21, - oa s 2w) W( )
n=1j=1 zJ

where

: @ Pl =] (L - 2.

V= @2 4)ec@ 0 oo 5

For the function ¢ we assume:
o that it is anti-symmetric and holomorphic in the x,, € C\{0};
o that it is symmetric and meromorphic in the logz; € C;
e that it has the transformation property

Ly eves XnlZls o s Z T ey ZN) = T (X« ooy XnlZts o

(2.15)

wa,,'r

z?(xh...,xﬂt“, e XplZly el ZN)Y = FX0, L, XR120 . ,zN)n
=1
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The function # is otherwise arbitrary and the choice of £s corresponds to that of sofutions.
The transformation property of ¢ implies

WX, oo, XalTan o, T -0 2N)  TF X 5T 2.16)
WKy, vee s Bg)Z1s o0 s 2N i) Xy ——z_',--:3 .
Ur(x X, 74 Xyl h] il — !
| I T A n|Z14 - IN =T_ZN xp ZJ (21?)
U(Xy,s o ees Xp|Z00eeny IN) =1 X~ ij_:,’

The integration §.dx, is along a simple ¢losed curve C, oriented anti-clockwise, which
encircles the points z;771"%(1 < j < N,k > 0) but not z;z!1**(1 < j < N,k > 0).
Finally, F has the form

A Gy Xz e ZalZatts o0 ZN)

M Hz‘in-z_l(zz’ - z;7%)

Flxy oo xlzr, oo zw) = (2.18)

where A®) ig a certain homogeneous polynomial to be determined; antisymmetric in
the variables (¥1,...,X,) and symmetric in the variables (z1,..., z,) and (zZnz1, ..., 2Z¥8),
separately.

In the foilowing sections we shall find a formula A%,

3. Thecasen =1 <1

In this section we find A = A for | > 1. The result will be given in (3.4). First, we
prepare some lemmas.

Lemma 3.1. Let f be a polynomial in x and set

z(—Ty*¥
= .
x [ [z — Z1T2)

- X —ZIT
Flxlzye.. .. 2Zy) = x—__—;;f(xiz1’f4,zz,---,zw)+

]_[_?;l(x —ZT) o) 5 -1 3, 4
x == % H(I—Zj?—’ W@zt 22, .., Zw)-.

x —z173 o3
(3.1)

Then we have

(Siv Pt 2, . zn) = Siv 1, - .0 28) (3.2)

where the lefi-hand side is the analytic continuation of (Si1y f)(z1, ..., Zw) in the variable
21- )
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Progf. When the integral (3.2) is analytically continued from z; to z;t¥, the
poles of the integrand move from x = ...,z177°%, ziv L ot g1, ... to x =
ceoynitl 217, 2175, 217%, .. .. In particular, the pole which moves from x = z;7™! to
x = 717> crosses the original contour C. Using (2.16), we obtain

(Sle)(zl-r4, Z2, - IN) = (ﬁ +27riResx=zl,3) dx

4 X —T
X f(xlzl'r 1Z?.v-"va) 3IF(X|ZI,...,ZN).
X —Z17
Set
3N
1T X —-ZT
r(x) = n 3 .
X jputt =yt
Then it has zeros at x = z;7 (f = 2,..., N) and is equal to 1 at x = z;7° and therefore

the residue at x = 7z can be replaced by the difference of two integrals as follows.
X =T

1 ;Y l2L .. zw)
=217

: 4
2"71’11{esx=21I“'1 dx f(‘xlzlr 12y ey zN)

x
x—-urt
= {?g —?g } dx f @707t 2, - 2) W (xlzi . 2)
e Je x—Z1T
_ f . X —zT r(x)’ £2N-2) 4 — T ﬁ X — zjr-'l r(x-:4)
e T lx—zt? xtt—z7d ) jx —gTd
x flatlztt zo, .o W]z, - 2)
In the second equality we use (2.17). Thus we obtain (3.2). O
Lemma 3.2. If f(xlz1,...,2y) is a polynomial in x, then there exists g{x|z;,...,2n); 2
polynomial in x, of degree less than or equal to N — 2, such that Sy f = Sing.
Proof. Since the product ]'{’.‘;l(x — z;7) cancels the simple poles at x = z;T of
W(x[z1, ..., 2n), we can deform the contour C to T#C without crossing the poles as follows.

N 4
55 dx x4 x =)W xlen, oo zw) = 56‘ dx 2 T x — o)Wz, ..o zw)
c j=1 e j=1

N
Shiak jg de ¥ e = ge )Wl zw).
C J=1
This implies that
ﬁdx Fx)W(xlz),...,zy) =0
for the polynomials

N Y
flx) =xH1 { H(x — zj7) — n(x - ZjT_l)} k=0
i=1 J=l1

From these relations any polynomial is reducible to some g of degree less than N —1. O
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We now solve (2.11) in the form H = S§;yF, where F is given by (2.18) with
n = 1. Because of (3.2), the left-hand side of (2.11) is equal to S vFy where
Fi(x|z1, ..., 2y} = Flx|za, ..., 25, 21) and Fy is given by (3.1) with f replaced by F,.
Similarly, the right-hand side of (2.11) is equal to S;x & for a certain #. Because of
lemma 3.2, we make an ansatz that the equation tF = Fy is satisfied by an F such that A
is a homogeneous polynomial of degree N — 2. In fact, this ansatz uniquely determines A
as we will see shortly.

Define

1[4 X \
M (x)ze, ... 2w = —{ x—zt) -7 [ [(x — z-r“‘l)}. (3.3)
1 N % 1:[ f E .
Equation (2.11) for A reads

1 X —2T
, 7 > - 3 A(le?.IZB, neey ZN).*ZIT“)‘
(zz — ot )nj=3(zj ~pTH X =0T

(=N Az Plzelza, . ooy 2w, 2T
N N
x(zo — 21t [[jea (@ — 017D [1j=s (@ — 2273

" {H_?’:l(x ~%T) L2V-2) ﬁ(x _ zjr—l)}
i=

x—z;19

1 1
= Axizalza, .. .. 2n T1)
2= { [Tjes (@ — 2279

2
I kv S PR --'*ZN)’}'

N
[Tz —217®

Comparing the residues at z; = 2,72, we obtain

(=22 Y (x — z17) ﬁ 1

] B (220, 24y ooer T
=B =0t (x)z2, 24 M)

Ax)z1)ze, 2172, 24y v TW) =
(tlz1lz2, 2175 24y oorr W) PR,

j=4
% A(Z1 7312202172, 24y oor TN AT ).

This determines the restriction of A at z3 = z;T° up to a constant muitiple. Choosing the
constant appropriately we have

Alx|zi|zz, 2125 Zas oo 2w) = (2 = 21DV 2 xlza, 24, .. ZH).

Becanse of the symmetry of A(xlz1|z2,...,2y) with respect to (z2,...,2n), we have a
similar equation for the restriction at z; = z17° for 2 € j < N. These N - 1 restrictions
uniquely determine the degree N — 2 polynomial A(x|zlz2, ..., Zw)

N=3 «
Axlzilzz, ..., 2x) = (x—271T) Z(I—TZ(N_Z_K))(—T)KXN_H Z(“Zlfz)lcx-a(Zz. o ZIN)
=0 a=0

B4
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where o, (a1, .. ., @) denotes the xth elementary symmetric polynomial
]"[(: —a)) = Z(—I Yo (@, .., a)t"*.
j=1 =0

To prove that this A actually solves (2.11) and (2.12), we use the following simple facts.
Let P, 0 be homogeneous rational functions of multi-variables. Suppose that the poles of
P, O are simple and they are contained in a union of k hyperplanes H; (1 < j < £)}. Then,
we can conclude P = @ in each of the following:

» the degrees of P, @ are less than or equal to —1 and all the residues of P, O at H;s
coincide.

o the degrees of P, Q are less than or equal to ~m and the residues of P, @ coincide
at H; for at least (k —m + 1) of them.

4. The general case

We now present our integral formula for the case n < !, The case n == will be discussed
at the end of this section. The polynomial A® in (2.18) is given by

Ay, L k2t e ZalZagts e o0 ZN) = deCATO (L1271, o 20120t s <o ZN 1A g
4.1)
The entries of the 72 x 7 matrix A® are defined as follows. Let us introduce the polynomials

&K(ali ---:an) by

K20

n -
H(t - aj)"'[ = Z&"(a“ e @,
J=i

For A, n,I 2 0, define the following polynomials:

M xlay, ..., anlry ..., )

{wnd-A—2 .
= Y -0, by, xR
=0

where

o™ (ay, ... anlb1y ... b) = ey o, B)

— Y 1Yol .. B)0(ar, - n)Gp-ulat, -, Gn)
Agegfge

and

A=2
g Gl ... an) =) (1 - PN oe(ar, o @)x T
K==0
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Note that qa("[)(al,...,anlb;,...,bg) =oy(by, ..., b)ifx <dord>n Ford 2 0and
n<l, set

n
AMxlay, ... albr, .., by = H(x g O Gar, ... albr, ..., br)

4 g2—nA=1) H(" B; r“)g("](xldls cees @) (4.2)

i=1
This is a homogeneous polynomial of degree ! + A — 2, symmetric with respect to 4;s and
b;s separately. Notice that

AP (x|ay, ..., aplby, ... By) is linear with respect to &s. (4.3)

By the construction (4.1) and (4.2), A®Y is a homogeneous polynomial of degree
n(l — 1)+ r(n — 1)/2 with the correct symmetries.

Lemma 4.1, The polynomial Ai”“ obeys the following recursion relation
A (xlay, ..., ap1,albr, .., Bioy 07 = (=at{AY T (xlar . @nn By - Breg)
—~a? APV xlar, o @t |y b)),
Progf. 1t follows from the recursions for f ¢ and g("}
®xiay, ..., @1, albr, .. Biog, at?) = = Dixlar, ..oy pelbre oo b1
—~aB? [T Ve, L et By - Bre)
(")(xfal ey Opl, A) = g(" Ylay, ..., ae1) — a‘rgi"__ll)(x @1, .-+, Q1) O
Lemma 4.2. 'The determinant A®™ obeys the following recursion relation
A xpleds e Gnoya alby, ... By, AT
= H(xu —ar) Z( RN lar, . anct by, brt)
p=l
X ACUNGy 2 e, il i) (4.4)

where £V is defined in (3.3).

Proof. By the definition we get
AT (lzt, ey Zol2nt s o ZN) =0

and

AP (X121, - Zalznts ooy 2w) = RO (x(21, L 2w,
Using lemma 4.1 we have
A (x L xale, alb, at?)

= ﬁ(xn — a7) det(AT D (xula' By — a7 AL TV (el 1D 100
p=l

where we employ the abbreviations a’ = (a1,...,8,-1) and &' = (b1,...,0-1). We
multiply the Ath row by az? and add it to the (A-+1)th row successively forA =1,...,n—L.

Then we obtain (4.4). 0
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In terms of A®) we have

n41 n
RHS of (2.11) = [ [(zj — 7%~ 1]"[ ]'[ @~y ]'_[?g dx,
J=2 J=2 i=n+2 u=1 c
AL ¢ ST S PN TS SITLT ST SURRP Praol L ¢ SO b PR 2t
(4.5)
where
A(nj)(xls crry xﬂ!zllzza seey Zn+|]Zn+2, seay ZN)
n+1
_THy-ut AGD
= Xty v ey XnlZ20 + oo Znst |Znaas - - 2N 21D
=2 (Zl _ZJ)T
- B 1=z 'ﬁ m—at® o -zt
= (z1 —zj)T 2] (z; —z)v imna G z71t?
ks f
{nl) 1
x A (xy, o xalzes 22, T Tt Zesns oo 2N T (4.6)
By repeating the argument of lemma 3.2, we find for # = H@
n+l
H(M)CZZ;---1Zn+llzﬂ+21-‘ 2 ZN: L lr) H(er _ZJ 2) ll—I 1_]: (Zl_z_; -1
=2 i=2i=n+2
I(ﬂ!)( 4 4.7
X 22,---1Zn+1|Zn+2,---;ZN,er) ( . )
where
I(N!J(Zz, vovs Znpl|Zatns -5 2N, 211‘4)
i
H 35 dxy, det(AT" (rulza, .o Zot1lZns2s -0 20 1T i
XW(xy, ..., X210, .04, ZN) 4.8)
and
el x—Z1T !
A (xlza. ... ZerlEnsz, oo 2w, z:r“)=mﬁ§" X2z, .. Zusilzns, - 2N, 1T
P2 A an [T S, oo [T EAT
x x— zlt3 K] -—zrzz j3 4T zlrz
!
AP @22, oo Tt [Znds - TN TTY), (49)

Let us prove (2.11) and (2.12) for H™. The first equation (2.11) is satisfied if the
following proposition holds.
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Proposition 4.3. Let A" and A be defined by (4.9) and (4.6), respectively. Then they
satisfy the following equation:

A nl) 4
det(AA (xu|22, wesy Lyt |Zn+2, ey ZNS T ))1$‘#$n
2 (nl
= (_r)HA(n )(xlv e ;-xrzlzl lz27 e Zn+1|2n+29 LRI ZN)- (4'10)
. . s iH v
Proof. In this proof, we use the abbreviations x = (x1,...,%,), £ = (x1,.7., xn),
I j : ¢
= (22, e r Zntlhr & = (22, ." 2 Tnihs Z¥ = (Zns2, ---,2n) and 27 = (Zpe3,-7., TN).

First of all, observe

-4t

= AP 12, 1T + g la 12 A (701212, 2T
&1

(nl)(x IZ iz 7 'C4)

where

g(x1z112'1z")

ey, i
_al xf) {;:_ ;‘:3 H(x —z;7)—7? "2 l—[(x—z 7" }/H (@—z17%).

j=2 i=n+2

Thanks to the n-fold linearity of the determinant we have

! 4
det(A(" )(xylzz, oo Zak)ZTna2s oo TN 21T N1

n

T .
= H -—!— det(A( z)(qulz 12", 217 ga pen
=i Xue —zy18
g(xulzllz'lz ) (D)
+ ]‘[<x,,, ) Z I‘[ det(B) V1< us @.11)
u=l1 v=I p=1

uFEw

where

500 _ { APl 12, 0Ty — T A a1

A T .
1 fl(nl)(z r3,z L‘h', zi 4) if 5= w

Both sides of {4.10) are anti-symumetric polynomials in the variables (x1,...,x,) and
symmetric rational functions in the variables (23, ..., Zp41) and (Zp42. . . -, Zn). Tespectively.
Their homogeneouns degree is n{l — 1) + n(n — 1)/2. From (4.6) and (4.11), (4.12) all the
singularities come from simple poles located at z; = z;7* (n+ 1 < i < N).

Let Cyc(n, I) denote the statement that equation (4.10) holds for (n, [) satisfying n < I,
Then, in order to verify Cye(n, ) it is enough to show the following three claims.

Claim 1: When z; = 2172 (2 < j € n+ 1), (4.10) holds.

Claim 2: When z; =712 2 < j € r+ 1 <i < N), (4.10) holds.

Claim 3: The residues at z; = 7322 (n + 2 < i < N) in both sides of (4.10) are equal,
This sufficiency is based on elementary algebra. If these three are valid, the difference
between the two sides is a polynomial of degree n(i — 1) + n{n — 1)/2 because of claim
3; it has nl -+ n{n — 1)/2 zeros because of the first two claims and the anti-symmetry with
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respect to the x,s and consequently it should vanish. Let us show Cyc(n,!) by induction.
‘We have proved Cyc(1,!) in section 3.

For n < { consider (4.10) under the restriction of z; = 217> (2 € j < n+ 1). Then we
get
RHS |y 12 = ]_[ A("”(xlzl, 212", 2} yen -
i=n+42 a-arv

In the LHS, we use the recursion relations of AY" and f™ and subtract the terms A"~1
and f, (:1 TH=n appearing in the Ath row, to find

" J j
—1i-1 x - —1-1 ~
LHS|gmgy2 = [ [ (s = 212 det(AT ™ Vi, 1 27127 + 30e) £ @7 2 12 1ghnsn
u=1
where
i N
E® =¥ P2, 2 / [ G-zt
i=n+2
: N
Since the nth row is egual to AN D (x, 12, 2" [Titsa(zi — 217%/(z; — z17%), the second
Jj

term g(x,) f;f"l)(zlr:"l 2’ [z in the Ath row can be removed for A # n. Hence, we obtain

j -

z; — 7zt _ - RTIRTLA

LHS |y = | I(x“—z;r) | | ' = E (=" RO B 2 |ZNAPTED G L 12,
I=n+2 =1

Thus claim 1 is proved.
Next let us show claim 2. Suppose Cyc{n — 1,I — 1). The value of the RHS at
5 =712 < j<n+1<i<N)is given recursively by

RHSyyyye = (—7)" 1 L e ]‘[(xﬂ—z,r)Z( 1)+

ZJ U=1

L. v
x BV D (a2, 27, 2)ACTID@, | 27| 2.

Repeating a similar calculation to that given before, we have

2172 _
L H(x.w“zﬂ)z( RNB 2y, 5,

v=1

LHS] = 2 =
=L, T Z

X det(A‘""' Ifw'”(x ]z’lz” 1™ 191 -
Igp(Fvisn

Thus claim 2 follows from the assumption of induction.
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Let us turn to claim 3. It follows from (4.6) that the residue of the RHS at z; = z;72 is
given by

ntl, 2 2 l—[ f”“ A P11
D" zir*(1 —17) (x —1T) : —_—
* = 1!1 (z — Zk)‘f .—1.12 Zm — a1

mehi

" : v i1
x 3 (U D,f7, 7YA U (7 g, 7).

r=1
From (4.11}, that of the LHS is equal to

N
a(-2)*" f]‘[(xﬂ—z;r)zm”-z’(xulz z")det(s'f" hhugn / [T Gn—27®

m=n42
mEi

where B’ ig obtained from B®" by the elementary transformation

r n+1 I}
h(x — Z;T) f.k(n )(xy.lzrlzﬁ, 21774)12,—211:2 - f).n )(erslzlriz 2174)|z;=zlr2
22 7

— 3
j=2 Ak
Hnl} )
B = 40, ) [ Gm et ek itugy G0
m=n+2
m=£i
L A1 12", 2ie M e if p=v.

Hence claim 3 is equivalent to

- A 2 R e ka
3R DI, 7Y deBY) = (DY R - Y ] ——

v=1

X ]'[ (Zm — 2;7%) Z( DR Dy, |2, z”)A(”‘”'D(xlz Iz”,z,)

m=n+2
ML
(4.14)

Thepolesatx, =z17° (I S p<nYinthe LHSand at z; = z; (2 € j.k < n+ 1) in the
RHS are spurious and consequently both sides of (4.14} are polynomials. Note that

A2, 2t mg e = (D2 — 2 (2 27) (4.15)

is independent of z;. Because of (4.3), (4.13} and (4.15), the degree with respect to z; of
the RHS is # — 1 and that of the LHS is at most # — 1. Hence, (4.14) is a polynomial equation
in z; of degree n — 1. Owing to claim 1, # points z; == z;7™2 (2 < ; £ n+ 1) satisfy
(4.14), Thus it holds 1dent1cally

Therefore Cyc(n, I} is verified. -

The second equation (2.12) is satisfied if the following proposition is valid.
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Proposition 4.4.

—(nl) —
det(Ay Zulz1t ™ 22, <o s ZndtlTntzs - 5 TN 1chpgn

= =B @, o Zalzs - r Zalis - lT) (4.16)
where
Azt 22,y TlZntts s TR = i — z::; ANzt 220 ey ZnlZngs -0 2N)
+ z:(—‘f)N-q'{x — T} l—[ x—zTl -2(N-2)n }
x x—gt iy —ur? i3~ zr»' =2
x APzt 3 it 22, s ZalZatts - 2N)
and
Ay, o Xl TnlZntts - ZHl2D)
= jE:E:i(thnu%kbnn%meniﬂ

a1 @ 2T

— ZN: (11— ]._I =Tt P —gyT2
Eh @ z)r! il @G-zt 55— T

an 1
X AMMxy, oy Xnl22s ooy Zne 25l Tngts - < TN 21D

Proof. In a similar way as in Proposition 4.3 the following two claims can be shown.
Claim 1”: when z; =172 (# + 1 € j < N') both sides of (4.16) coincide.
Claim 2: when z; = z;72 (2 < i € n < j € N) both sides of (4.16) coincide.
From power counting we do not need an analogue of claim 3. In fact, let us factor out
the difference produoct

41 N

H (e — %4 and H ((Zj —zit7%) n (z — er"z))
<y =2 isat2

from. the difference of both sides. Then it is a rational function of homogeneous degree —n

with, at most, # — 1 simple poles located at z; = 2172 (2 £ i < #) and should therefore

be zero. 0

Now we are in a position to describe the main theorem of the present paper.

Theorem 4.5. For n < 1, the integral formula given by

n
HG, ...y =]] idxﬁ(xl, cees Xal@hs e 2T Xal2 e 28D
p=l
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A(n[)(xh---,xnlzl ---rzfllz +l "-,ZN')
F(x:'s---:x-'!!zh---)ZN)= = 7 N, "2’
=1 Hi=n+!(zf —z;T%)
[
Ay, X2 e Tl e 28D = detCATD Goulze v ZalZagds - 0 ZND 10 pn

1
AP Gl . anlby, ) = [ [~ @) A (xlan, - aglby, o B
j=1

!
+ 72D [(x - bir)e (xlan, ..., as)

i=t

satisfies (2.11) and (2.12) with (8,,8.) = (v, 7).

Finally, we give Smirnov’s formula for the case #n = . The above formula specialized
to n = does not give a solution. We use an (n — 1)-fold integration and replace A®"? by

A(’“’)(xt, ceesXpetl@n, o @b, Ey) = det(Af_Tl)(x# la, -y anldi, -, bn))l-.{l,.u@n—l-
@.17

In this case, £ (x]ai, ..., @b, ..., ba) = 8" (x|by, ..., b,) and g™ (x|by, ..., By) =0
and hence

AP (xlay, ..., b, . . By)
H

"
= l_[(x - ajr)gi"}(xibl, veeaby) D H(x — b,—r")gi")(x la, ..., an).

j=I i=1
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