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J. Phys. A Math. Gen. 27 (1994) 3267-3283. Wated in the UK 

Smirnov's integrals and the quantum 
Knizhnik-Zamolodchikov equation of level 0 

Michio Jimboi, Take0 Kojimaj!, Tetsuji Miwa$ and Yas-Hiro Quanotp 
t Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606. Japan 
f Research Institute for Mathematical Sciences. Kyoto University. Kyoto 606, Japan 

Abstract. We study the quantum K@u&Zmolodchikov equation of level 0 associated with 
the spin 11'2 represenhtion of Uq(s12). We find an integral formula for solutions in the case of 
an arbitrary total spin and 191 c 1. In the formula, different solutions can be obtained by taking 
different integral kernels with the cycle of integration being fixed. 

1. Introduction 

In this paper, following [I], we will give an integral formula for solutions to thecquantum 
Knizhnik-Zamolodchikov (Kz) equation [2] for the quantum affine algebra U,(&) when 
the spin is 1/2. the level is 0 and 141 c 1. 

In 111, Smirnov gave an integral formula for the form factors of the sine-Gordon model. 
His method involved solving a system of difference equations for a vector-valued function 
in N variables (PI, . . . , fiN),_Which takes values in the N-fold tensor product of the spin 
1/2 representation C2 of U,(sIz). The total space Cz @ . . . @ CZ splits into the subspaces 
of fixed total spins (1 - n)/Z where I + n = N and 0 Q n < N. In [I], an integral formula 
was given far the case n = I = N / 2  (N even) and 141 = 1. In a private communication to 
the present authors, Smirnov showed the modified formula for the case 141 c 1, which is 
given at the end of section 4 of the present paper. Our main contribution is to generalize 
Smimov's formula to the case of an arbitrary total spin. 

Before going into the details, let us discuss several points concerning the quantum 
Knizhnik-Zamolodchikov equation and the integral formulae. We are largely indebted to 
Smimov for discussions on this matter. 

The KZ equation was introduced in [3] as the master equation for the correlation 
functions of the conformal field theories with gauge symmetries, i.e. the Wess-Zumino- 
Witten model. In [4], it was studied by using the representation theory of the &ne 
Lie algebra sI2. The main observation in these developments is that the local operators 
in the Wess-Zumin+Witten model are realized as the intertwiners of the highest-weight 
representations (they are called the vertex operators), and the correlation functions which 
are given as the matrix elements of the products of the vertex operators with respect to 
the highest-weight vectors, satisfy the KZ equation. The components of the intertwiners 
belong to finite-dimezional representations of the affine Lie algebras, e.g., the spin I/2 
representation C2 of 5b. ~ Such representations are parametrized by the complex spectral 
parameters. The correlation functions, therefore, take their values in the tensor products 
of finitedimensional representations and depend on the spectral parameters associated with 
them, say @ I , .  . . . BN). 
5 A Fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists. 

03054470/94/093267+17$19.50 0 1994 IOP Publishing Ltd 3267 



3268 Michio Jimbo et ai 

This similarity between the Kz equation and the form-factor equation led to the 
introduction of the quantum Kz equation by Frenkel and Reshetikhin. The representation 
theory of the affine Lie algebras is replaced by that of the quantum affine algebras, and the 
system of differential equations is replaced by that of difference equations. 

Compared with the quantum KZ equation of Frenkel and Reshetikhin, Smirnov's 
equation for the sineGordon model is special for the following two reasons. First, the 
former contains a complex parameter; the level of the highest-weight representations. In 
the latter, the level is set to 0. In this paper, we stick to the level 0 case as in Smimov's 
work. 

Second, the quantum KZ equation  admits a choice of a diagonal operator, which acts 
on the tensor component whose spectral parameter undergoes a shift (see (2.5)). Smirnov's 
equation chooses the identity operator for that. In OUT integral formula, the said operator is 
not the identity in general, but one fine-tuned according to the total spin ( I  - n)/2. Since 
Smimov considered only the case 1 =n, the fine tuning was trivial. To be precise, the case 
1 = n f 2 is also studied in [l]. However, since it is only in the rational limit. the operator 
again reduces to the identity. 

We now discuss the solutions and the integral formulae. 
The analytic structures of the solutions to the quantum KZ equation and the ordinary one 

differ. The former admits solutions which are meromorphic in the variables (@I, . . . , @N), 
i.e., the additive spectral parameters. The latter, in general, forces its solutions to exhibit 
branches. Namely, the monodromy structures of the solutions are very different. In fact, it 
is more important to consider the braid relations for the solutions, i.e. the behaviour of the 
solutions when two of the variables are interchanged. In [4], the braid representations for the 
~z equation were nicely deduced from the commutation relation for the vertex operators. As 
in [Z, 51, the quantum vertex operators enjoy a similar commutation relation. The difference 
in these two commutation relations is that in the former the coefficients are independent of 
the spectral parameters but in the latter they are not. 

The said difference is closely related to the following fact. Being a holonomic system 
of differential equations, the space of the solutions to the KZ equation is finite-dimensional, 
while the quantum KZ equation admits the linearity with the coefficients in the ring of 
quasi-constants, i.e. functions invariant under the relevant shifts of the spectral parameters. 
Therefore, the braiding property of the solutions to the KZ equation is unique up to finite- 
dimensional similarity transformations while it is quite ambiguous for the quantum KZ 
equation. Nevertheless, the commutation relations of the quantum vertex operators imply 
that the braid relation with the R-matrix in the coefficients (we call it the R-matrix symmetry, 
see (2.3)) is indeed compatible with the difference equation. For example, the solutions 
obtained from the quantum vertex operators satisfy this property. Smirnov suggests that we 
can utilize the freedom of the choice of the quasi-constants to choose this particular braid 
relation for the solutions. Thus, we demand R-matrix symmetry in constructing the integral 
formulae. Then, the vector-valued unknown function reduces to a single function, and the 
system of difference equations reduces to a certain deformed cyclicity (2.4). 

Once the equation is thus reduced, we can conshuct the integral formula as follows. 
Let us explain our formula in the case n < 1. We find it convenient to employ the 
multiplicative spectral parameters (ZI, . . . , ZN), where ,$ a logzi. Following Smimov, we 
choose an integral kernel Y(x1,. . . , x.1~1,. . . , ZN) .  It has simple poles at xfi = ~ j q * " + ~ ~ '  
(k = 0,1,. . .), and satisfies certain quasi-periodicities with respect to the shifts of the 
variables xfi + xlrq4 and zj + zjq4. In fact, the choice of such an integral kemel 
is not unique because the solutions to the quasi-periodicity conditions are not unique. 
Smirnov's idea is that this freedom in the integrand corresponds to the freedom of the 
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solutions up to quasi-constants. The total integrand contains a fixed  rational^ function 
F = F ( x 1 , .  . . , x , I z~ ,  . . . , Z N )  other than the said kemel. It is a polynomial in xps  and 
homogeneous in x p s  and 2,s. We consider the total integral as an integral transform of 
this rational function in terms of the integral kernel, fixing appropriately the cycles for the 
inregrations with respect to +S.  It is easily shown that if F is a polynomial of degree greater 
than N - 1 in a variable x p .  then it is reducible to a lower-degree polynomial modulo; a 
certain 'total difference' which vanishes after integration with respect to 4. Using this 
fact, we can write down a system of algebraic relations for F as a sufficient condition for 
the deformed cyclicity. These conditions are also necessary if we assume that there are no 
other lower-degree relations of the kind mentioned above. Thus, we find F satisfying them. 
The details will be given in~the subsequent sections. 

Lastly,~we discuss the related works on the integral formulae for the quantum KZ 
equations. In [6,7], solutions by Jackson-type integrals are obtained. Their formulae are, in 
principle, valid for the general level, as opposed to our integral formula restricted to level 
0. On the other hand, the problem of choosing the cycles for Jackson-type integrals, which 
accommodate the freedom of the solutions, is not well studied. In particular, the choice of 
the cycles that leads to R-matrix symmetry is totally unclear. 

A different type of integral formula was obtained in [SI by using the Frenkel-Jing 
bosonization of the level 1 highest-weight representations [9]. Though the level can be 
chosen arbitrarily, it gives only one particular solution for each level. Since the relation 
between the formulae in this paper and those in [8] are not yet clear, we do not discuss this 
matter further. 

The rest of the paper is organized as follows. In section 2, we formulate the difference 
equation in terms of a single component of the vector. In section 3, we solve the algebraic 
relation for F in the case n = 1. In section 4 we solve the general case recursively. 

2. Difference equations 

The purpose of this section is to formulate the problem, thereby fixing our notations. 
Let us begin by recalling the standard trigonometric R-matrix R(z )  E End(V 8 V )  

associated with V = C2. Fix a complex number q such that 0 < 141 < 1. The matrix R(z )  
is specified by giving the matrix elements relative to the standard basis U+, U- E V 

In what follows, we shall work with the tensor product VgN. Following the usual 
convention, we let ~ ( z )  ( j  # k) signify the operator on VBN acting as ~ ( z )  on the 
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( j , k ) t h  tensor components and as the identity on the other components. In particular 
we have Rkj(z) = PjkRjr(z)Pja, where P E End(V 8 V) stands for the transposition 
P ( x  8 y )  = y 0 x .  

The main properties of R(z)  are the Yang-Baxter equation 

R ~ z ( z I / z z ) R I ~  ( Z I / Z ~ ) M Z Z / Z ~ )  = & ( z z / z ~ ) R I ~ ( z I  / Z ~ ) R I Z ( Z I  /ZZ) (2.1) 

and the unitarity relation 

Riz(Zi/Zz)Rzi(zz/zi) = 1. (2.2) 

The equations that concern us with in this paper are the following ones for a function 
G ( z l ,  . . . , Z N )  with values in VaN: 

(i) R-matrix symmew 

Pjj+lG( ..., zj+l ,z j ,  ... ) = Rjj+l(zj/zj+])G( ..., z ~ , z j + t .  ..;) (1 < j < N - 1). 

(2.3) 

(ii) Deformed cyclicity 

PIZ.. . PN-ING(ZZ. .  .. . z N , z I ~ - ~ )  = DlG(z1, . .. , ZN). (2.4) 

In (2.4). D1 is an operator acting on the first component as D = diag(d+, CY-), the entries of 
which will be specified below, and acting as the identity on the other components. Here a 
remark is in order about the precise meaning of these equations. The functions we consider 
throughout this article are not necessarily single valued in zj but are meromorphic in the 
variable logy.  Accordingly, the shift zj --f ~ j q - ~ ,  as in (2.4). is understood to mean 

The equations (2.3) and (2.4) with D = 1 appeared in Smirnov's works on the form 
factors of massive integrable field theories [l]. As was pointed out in [lo], they imply the 
quantum KZ equation of level 0 [2] 

logzj -+ logzj -4lOgq. 

G(z1 , .  . . , z j q 4 , .  . . , ZN) = Rj-I j (z j - l /z jq4)- l .  . .R I  j(z1/zjq4)-lDF 1 

x R ~ N ( z ~ / z N )  ... R j j + i ( z j / z j + i ) G ( ~ i , . .  . , z j , .  . . . z N ) .  (2.5) 

These equations have a Zz-symmetry which means that if G ( Z I ,  . . . ~ za) solves (2.3). (2.4) 
then B(z l ,  . . . , Z N )  = ux 8 . . .8 u X G ( z l ,  . . . , ZN) solves the same system wherein S+ and 
6- are interchanged and where ux is given by 

In the following, we set z = q-I. We define the components of G by 

G ( z I , .  . . , Z N )  = U,, 8.. . 8 uEN (n -&~)G""'"(zI, .. . , ZN). (2.6) 
Ej i Ej<O 
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Then the equation (2.3) (resp. (2.4)) reads as (2.7) (2.8) (resp. (2.9)): 

j j+l j j+l 
(2.7) c e ... (. . . , zj ,  Zj+l , .  . .) = G (. . ., Z j + l ,  z j ,  . ..) E ... 

j j+l z j  - zj+lr.Z j j + l  G...+ - ... (. . . , z j ,  Z j + l ,  . . .) = G -  + .-(. . . , Z j + l ,  z j ,  . . .) 
( Z j  - z j + l ) r  

(22, . . . , Z N ,  zlr4) = &, GEIEz...EN (Z1 .  z2, . . . I Z N ) .  (2.9) 

The factor ne,co l/ij in (2.6) is chosen so that the coefficients in these equations are free 
from square root symbols. Note that the singularity at zj =~ z j + t  in (2.8) is spurious. 
Equations (2.7H2.9) split into blocks, each involving components such that 

G ~ . . . E N E !  

n = $(j I q = -1 I =  tt(j 1 sj = +) (n + Z =  N) 

are fixed. Because of the &-symmetry we may assume n < 1 without loss of generality 
Consider the extreme component 

n 1 -- 
(2.10) 

Because of (2.7), this function is symmetric separately in the variables (21, . . . , z,) and 
(zn+l, . . . , Z N ) .  Equation (2.8) tells that all the components with fixed n, I are uniquely 
determined from H. Conversely, given any such H, the Yang-Baxter equation guarantees 
that (2.3) can be solved consistently under the condition (2.10). 

Remark. 
is as follows. Define the operator B(z l , .  . . , Z N l t )  E End(VeN) by 

G-. . . -+. . .+( 
21, . . . , z N i )  = f f ( z l ,  ... v Zn I Zn+lr .. . . Z N ) .  

An explicit way of reconstructing G from H is described in [I]. The procedure 

Here the 2 x 2 matrix structure is defined relative to the base v i  of the (N + 1)th tensor 
component of V@(N+l'.  For 01 = (011,. . . , E N )  with 01i = =k, set J$ = { j  1 01j = & 1 and 

W a ( Z l ,  ..., z N ) =  n B ( z l , . . . , z N l z a m ) Z 2  
m € C  

Q = U+ @? ... @? U+ E V W  

Then 

Under the relations (2.7) and (2.8). it is sufficient to consider the remaining relation 
(2.9) for two cases with &I = + and el = -, e.g., ( E ~ .  . . . , e N )  = (+- ...-U and - 

n 1-1 
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=+. . . + -). Solving (2.8) for the corresponding components in terms of @.lo), we 

find that the original system (2.3), (2.4) is equivalent to the following for the single function 
H(z1 , .  . . , zn [ zn+l. .  . . , Z N ) ,  satisfying the said symmetry condition, 

c--.z 
"-1 I 

1; 
H ( Z 1 ,  ZZ. . . . , Zn+1 IZj, zn+2. . . . , ZN) (2.1 1) 

j=2 
k # j  

N z 1  - z j r - 2  
8 - 5 - Z H ( z , r - 4 , Z z , ~  . . , inlZn+l.. . .. ZN) = n 

(ZI  - z j ) r - '  
H(z1, ..., znlzn+1, ..., Z N )  

j=n+l 

(2.12) 

In what follows we tune 6+ = r-" and 6- = r-I. We wish to find an integral formula 
of the form 

H ( Z l , .  . . , ZN) = ( S " N F ) ( Z l , .  .. 1 Z N )  (2.13) 

where S n ~  stands for the integral transform 

(S,,VF)(ZI ,..., Z N )  = fi$ d x , F ( x t  ,... ,x,lzl,...,z~)W(~1,...,~~lz1,...,~~).(2.14) 

The notation is explained below. 

p=1 c 

The kernel W has the form 
n N  

p=1 j-1 
W(x1, . . . , X,lZl, . . . , Z N )  = V ( X 1 ,  . . . , X"IZ1, .  . . , ZN) n ne ?;) 

where 

For the function V we assume: 
that it is anti-symmetric and holomorphic in the x p  E @.\IO]; 
that it is symmetric and meromorphic in the l o g z j  E C, 
that it has the transformation property 

- z j r  
b(x1.. . . , X " I Z l . .  . . , zjr4,. . ., ZN) = V ( x 1 , .  . . , X " I Z I , .  . . , Z N )  n - 
V ( x 1 , .  . . , X"4,. . . , X"lZ1, .  . . , Z N )  = V ( X 1 , .  . . ,X.IZI,. . . , Z N ) n  -. 

@=I xc 

j=1 Z j  

(2.15) 
- x p t  
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The function O is otherwise arbitrary and the choice of Os corresponds to that of solutions. 
The transformation property of 17 implies 

(2.16) 

The integation $, dx, is along a simple closed curve C ,  oriented anti-clockwise, which 
encircles the points zjs-'-"(l 6 j 6 N, k 0) but not z j ~ l + ~ ( l  Q j < N, k > 0). 
Finally, F has the form 

where A(n') is a certain homogeneous polynomial to be determined; antisymmetric in 
the variables (XI, . . . ,a) and symmetric in the variables ( ~ 1 , .  . . , z,) and (z,+I. . . . , ZN), 

separately. 
In the following sections we shall find a formula A(n'). 

3. Thecasen=I  c l  

In this section we find A = 
prepare some lemmas. 

for 1 > 1. The result will be given in (3.4). First, we 

L e m m  3.1. ~ Let f be a polynomial in x and set 

where the left-hand side is the analytic continuation of ( S l ~ f ) ( z l . .  . . , ZN) in the variable 
z1. 
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Proof: When the integral (3.2) is analytically continued from z1 to z1r4, the 
poles of the integrand move from x = ..., z1r-',z1r-',zlr, Z I T ' ,  ... to x = 
..., ~ l r - ~ , z . ~ r ~ ,  z1r5,z1r9, .... In particular, the pole which moves from x = ZIT- '  to 
x = z1r3 crosses the original contour C. Using (2.16), we obtain 

( s l N f ) ( Z l r 4 ,  2 2 ,  . . . , Z N )  = 

r ( x )  = - 

Then it has zeros at x = z j r  ( j  = 2, . . . , N )  and is equal to 1 at x = z ,  r3 and therefore 
the residue at x = Z I  r3 can be replaced by the difference of two integrals as follows. 

x - 215 
2niRes,,,,i dx f(xlz1r4,zz, ... ,zN)- Y(xlZl, ..., Z N )  x - z * r 3  

X f ( Z 1 T 3 1 Z 1 r 4 ,  Z Z , .  . . , z N ) * ( x l z l , .  . . . Z N ) .  

In the second equality we use (2.17). Thus we obtain (3.2). 0 

Lemma 3.2. I f  f ( x l z 1 , .  . . , Z N )  is a polynomial in x ,  then there exists g(xlz1,. . . , z N ) ;  a 
polynomial in x ,  of degree less than or equal to N - 2, such that S I N  f = & N g .  

Proof. Since the product ~ Y = , ( X  - zjr) cancels the simple poles at x = z j r  of 
Y(x l z l ,  . . . , Z N ) ,  we can deform the contour C to r4C without crossing the poles as follows. 

This implies that 

for the polynomials 

From these relations any polynomial is reducible to some g of degree less than N - 1. 0 
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We now solve (2.11) in the form H = S I N F ,  where F is given by (2.18) with 
n = 1. Because of (3.2). the left-hand side of (2.11) s qnal to Z S I N ~ ~  where 
FI(X~ZI,. . . , ZN) = F(xIzz,. . ., Z N .  21) and & is given by (3.1) with f repIaced by f i .  
Similarly, the right-hand side of (2.11) is equal to S ~ N F Z  for a certain & Because of 
lemma 3.2, we make an ansatz that the equation r f l  = Fz is satisfied by an F such That A 
is a homogeneous polynomial of degree N - 2. In fact, this ansatz uniquely determines A 
as we will see shortly. 

Define 

Equation (2.11) for A reads 

Comparing the residues at 23  = z 1 r 2 ,  we obtain 

X A ( z I ~ ~ I z z I z I ~ ~ ,  Z4, ..., ZN, 21r4). 

This determines the restriction of A at z3 = 
constant appropriately we have 

up te a constant multiple.. Choosing the 

A(XlZlI22,  2 lZz ,  24, . . . , ZN) = ( X  - Z I Z ) ~ ( ~ " ( X ~ Z ~ ,  24, . . ..'ZN). 

Because of the symmetry of A(xIz1 Iz2 , .  .. , Z N )  with respect to (22.. . . , Z N ) ,  we have a 
similar equation for the restriction at zj = ZIT' for 2 < j < N .  These N - 1 resnictions 
uniquely determine the degree N - 2 polynomial A ( x l z i l z z , .  . . , Z N )  

N-3 x 

A(xlzilzz, . . . , ZN) = ( X - z i t )  x(1-r Z(N-2-u) )(-T)YXN-3-K x(-Z' l t2) 'D,- i (z2.  .,.zN) 
K=O X=O 

(3.4) 
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where u x ( a l ,  . . . ,a,) denotes the ~ t h  elementary symmetric polynomial 

To prove that this A actually solves (2.11) and (2.12), we use the following simple facts. 
Let P ,  Q be homogeneous rational functions of multi-variables. Suppose that the poles of 
P ,  Q are simple and they are contained in a union of k hyperplanes Hj (1 < j ,< k). Then, 
we can conclude P = Q in each of the following: 

the degrees of P ,  Q are less than or equal to -1 and all the residues of P ,  Q at Hjs 
coincide. 

the degrees of P,  Q are less than or equal to -m and the residues of P, Q coincide 
at Hj for at least (k - m + 1) of them. 

4. The general case 

We now present our integral formula for the case n < 1. The case n = 1 will be discussed 
at the end of this section. The polynomial A@') in (2.18) is given by 

A(""'(x1,. . . , n,lzi,. . . , znlzn+i. .. . , ZN) = det(A, (x,lzi, ... .znlzn+i.. . . , Z N ) ) I ~ A . , ~ ~ .  ("I) 

(4.1) 

The entries of the n x n  matrix A("') are defined as follows. Let us introduce the polynomials 
S z ( a l F . . . , ~ n )  by 

For A, n, 1 > 0, define the following polynomials: 

f p " ( x l a l , .  . . ,a.lbl, .. ., bd 

and 
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Note that yc)(a1,. . . , a,lbl,. . . , bt) = o;(bl,. . . , b!) if K < A or A 7 n. For A > 0 and 
n < 1, set 

I 

(4.2) -1 (n) n ( x - b i r  )g, (XIUI, ..., U"). 
+ .&-n+A-l) 

i=l 

This is a homogeneous polynomial of degree 1 +A - 2, symmetric with respect to ais and 
bis separately. Notice that 

A ? ) ( X ~ U I , .  . . ,a,lbl,. . . b ~ )  is linear with respect to bis. (4.3) 
By the construction (4.1) and (4.2), A(n') is a homogeneous polynomial of degree 
n(1-  1) + n(n - 1)/2 with the correct symmetries. 

Lemma 4.1. The polynomial A Y )  obeys the following recursion relation 
(nl) (c-If-1) A, ( ~ 1 ~ 1 ,  .. . ,Oa-i,~1bl,. . . , bI-1, at2) = (x-ar)(A, . (x la l , .  . . , ~~-1Ib1,. . . , br-1) 

3 ("-1f-I) 
- U T  4 - 1  ( x I ~ I , .  . . , ~n-~lbi. . . . , br-1)). 

Proof. It follows from the recursions for fJd' and gf' 
( E l )  f, 

2 - ("-1i-I) ( X I U I  ,..., ~ ~ - i I b i ,  ..., bi-1) ( X k ,  .. .,a,-l,albl, ..., bl-i,at ) - f, 
3 (It-II-I) 

fh-1 ( ~ l a ~ ~ . . . ~ a n - ~ ~ l b ~ ,  ..., bt-1) 
(n) 0-1) (JI-1) 0 g, (xla1,. .. ,a*-l,Q) =g, (xla1, .. . , U 4  -arg,-, (xla1,. . . ,U,-l). 

Lemma 4.2. 

A(""(xI,. ..,x~~uI, ..., a,-l,albi, ... , bi-i,arz) 
The determinant A(n') obeys the following recursion relation 

(4.4) 

Proof. By the definition we get 

Ar'(xlzi,.  . . , z n I z n + i , .  . . , ZN) = 0 
and 

A:;;(X[Zl,. . . , ZnlZn+l,. . . , ZN) = h("'(Xl21.. . . . ZN). 
Using lemma 4.1 we have 

A("')(xl,. . . , x,la', alb', at2) 
n 

3 ("-&I) - - H ( x p  - ar)  det(A:"-"-')(x,la'lb') - ar A,-I ( x , l a ' l b ' ) ) ~ c ~ , ~ ~ .  
&=I 

where we employ the abbreviations a' = (ai,. . . ,%-I) and b' = (bi, . . . , b d  We 
multiply the hth row by ar3 and add it to the (A+l) th  row successively for L =I, . . . , n- 1. 
Then we obtain (4.4). 0 
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In terms of A("') we have 

and 

x - ZlC ("l) AA "(nil ( x l n ,  . .. , zn+llzn+~. ... , z s , z l r 4 ) =  A, drlzz, . . . , zn+ilzn+z,. . . , Z N .  ~ 1 . c ~ )  x - z 1 r  

x A:""(zit3Izz, . . . , zn+lIzn+z,. . . , Z N ,  zit4) .  (4.9) 

Let us prove (2.11) and (2.12) for Hc"'). The first equation (2.~11) is satisfied if the 
following proposition holds. 
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Proposition 4.3. Let zy) and a(") be defined by (4.9) and (4.6). respectively. Then they 
satisfy the following equation: 

"(no 4 det(A, (x,Iz~,. .. ,zn+~lzn+z, .  . . , z N , z I ~  ))IQ,,c~ 

= (-rYA(%1, . . . , X,IZI 122. f . .  I Z"+l Izn+z,. . . , Z N ) .  (4.10) 

Proof. In this proof, we use the abbreviations x = (XI, . . . , xn),  f = (XI. . 7 . ,  xJ, 

z' = (22, ... . , zn+ l ) ,  z' = ( ~ 2 . .  . . , zn+l) ,  Z" = (z,+z,. . . , ZN) and e" = (zn+zi .?. , z N ) .  
Fust of all, observe 

Y 

! ! ~ i i 

where 

Thanks to the n-fold linearity of the determinant we have 

det(;i:""(x,lz2. .... z.+~Izn+z ,... . Z N , Z I ~  ))IcA.,G~ 4 

(4.11) 

where 

Both sides of (4.10) are anti-symmetric polynomials in the variables ( X I ,  . . . , xn) and 
symmetric rational functions in the variables (zz, . . . , zn+l) and (z,+z. . . . , ZN), respectively. 
Their homogeneous degree is n(1 - 1) + n(n - 1)/2. From (4.6) and (4.11), (4.12) aH the 
singularities come from simple poles located at zj = zI 9 (n + 1 < i < N). 

Let Cyc(n, 1 )  denote the statement that equation (4.10) holds for (n, 1) satisfying n < E .  
Then, in order to verify Cyc(n, I )  it is enough to show the following three claims. 

Claim 1: When z, = z1r2 (2 < j < n + l), (4.10) holds. 
Claim 2: When zi = z j r2  (2 < j Q n + 1 i i Q N ) ,  (4.10) holds. 
Claim 3: The residues at zi = z l r z  (n + 2 Q i Q N )  in both sides of (4.10) are equal. 

'Xi sufficiency is based on elementary algebra. If these three are valid, the difference 
between the two sides is a polynomial of degree n(l - 1) + n(n - 1)/2 because of claim 
3; it has nl + n(n - 1)/2 zeros because of the first two claims and the anti-symmetry with 
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respect to the xws and consequently it should vanish. Let us show Cyc(n, I )  by induction. 
We have proved Cyc(1, I )  in section 3. 

For n c 1 consider (4.10) under the restriction of z j  = ZIT' (2 < j < n + 1). Then we 
get 

In the LHS, we use the recursion relations of AY)  and f?') and subtract the terms A:"_;"-') 
and fA-l 

("-1i-I) appearing in the Lth row, to find 

n j I; 
L H S ~ ~ ~ ~ , ~ Z  = n ( x &  - Z I T )  det(A:"-"-')(x,ls lz") + i ( x J f ~  ("-1'-yZl r3 I 2' 12'')) 1 <&&a 

@=I 

where 

i 
Since the nth row is equal to h"-')(x,l z' , I") nkt2(zi - zlt4)/(zi - zir'), the second 

term ~(x,)f:"')(z1r31 z'lz") in the Ath row can be removed for A $ n. Hence, we obtain 
I; 

Thus claim 1 is proved. 

zi = zjr2(2 < j < n + 1 < i < A') is given recursively by 
Next let us show claim 2. Suppose Cyc(n - l , Z  - 1). The value of the RHS at 

i i  { j  
x h(N-2)(X,[zl, z ! , ~ ) ~ ( n - l ~ - l ) ( ~  , 1 ZllZ'IZ?'). 

Repeating a similar calculation to that given before, we have 

Thus claim 2 follows from the assumption of induction. 
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Let us turn to claim 3. It follows from (4.6) that the residue of the RHs at zi = z1z2 is 
given by 

From (4.1 l), that of the LHS is equal to 

where B'C"') is obtained from B("') by the elementary transformation 

m#i 

(4.14) 

The poles at x p  = z1r3 (1 g p < n) in the LHS and at zj  = zk (2 g j, k < n + 1) in the 
RHS are spurious and consequently both sides of (4.14) are polynomials. Note that 

is independent of 21. Because of (4.3). (4.13) and (4.15). the degree with respect to zi of 
the RHS is n - 1 and that of the LHS is at most n - 1. Hence, (4.14) is a polynomial equation 
in zl of degree n - 1. Owing to claim 1, n points z1 = zjr-' ( 2 < j g n + 1 ) satisfy 
(4.14). Thus it holds identically. 

U Therefore Cyc(n, 1 )  is verified. 

The second equation (2.12) is satisfied if the following proposition is valid. 



-W -z lr- l  A'" ')(xlz~r-~, 22,. . . , znIzn+ir. .. , Z N )  A, (xlzlr4,z2, .. . ,z,,lzn+i. .... Z N ) =  n-zIr-3 

- 
k#j 

X A."(Xi,. .. ,X,IZz,  .. . , Zn, ZjlZn+i,. . ., Z N .  Z I ) .  
i 

Proof. In a similar way as in Proposition 4.3 the following two claims can be shown. 
Claim 1': when z j  = z 1 ~ - ~  (n + 1 < j < N ) both sides of (4.16) coincide. 
Claim 2': when zi = ~ j r - ~  (2 4 i < n c j 4 N )  both sides of (4.16) coincide. 
From power counting we do not need an analogue of claim 3. In fact, let us factor out 

the difference product 

from the difference of both sides. Then it is a rational function of  homogeneous degree -n 
with, at most, IL - 1 simple poles located at zi = z 1 T 2  (2 < i < n)  and should therefore 
be zero. I3 

Now we are in a position to describe the main theorem of the present paper. 

Theorem 4.5. For n e I ,  the integral formula given by 
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A("')(x1,. . . ,xn1zl,. . . , znlzn+lr.. . , ZN) =~det(A:O"(x,lzl,. . . , znIzn+i,. . . , ZN))I<A.,LC~ 

I 
-1 (") n ( x - b t z  k A  W I 7 . . . , a n )  + zZ(I-n+A-I) 

i d  

satisfies (2.11) and (2.12) with (8+, 8-) = (r-", 5-l). 

Finally, we give Smirnov's formula for the case n = 1. The above formula specialized 
to n = 1 does not give a solution. We use an (n - 1)-fold integration and replace A(nn) by 

A(nn)(x~, .... xn-l1ar, .... anlh, ... ,W =det(A:";,)(x,lal, ..., anlbl, ..., W)I<A,,<~-I. 
(4.17) 

In this case, f$'")(xlal,. . . , u,lbl,. . . , bn) = gt ) (x lb l , .  . . , bn) and g p ) ( x l b l , .  . . , b,) = 0 
and hence 

AP)(xlal, . . . , a,,lbi,. . .bn) 
" n 

= n ( x  -ajz)gP)(xlbi, . . . , b,) + Z2('-I) n ( x  -biz- I )SA ("1 ( x [ a l , .  . . , an ) .  
j=l  i=l 
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